

Расходомер электромагнитный Питерфлоу РС

Руководство по эксплуатации ТРОН.407111.001 РЭ

Редакция 3.07

ЗАО «ТЕРМОТРОНИК»

193318, Россия, Санкт-Петербург, ул. Ворошилова, д.2 Телефон, факс: +7 (812) 326-10-50 Сайт ЗАО «ТЕРМОТРОНИК»: www.termotronic.ru Служба технической поддержки: support@termotronic.ru тел. 8-800-333-10-34

СОДЕРЖАНИЕ

Введ	дение	. 3
1	Назначение и область применения	. 3
2	Технические характеристики	. 4
2.1	Эксплуатационные характеристики	. 4
2.	1.1 Параметры измеряемой среды	. 4
2.	1.2 Рабочие условия эксплуатации	. 4
2.	1.3 Электрические параметры блока питания из комплекта поставки	. 4
2.	1.4 Габаритные размеры и масса	. 4
2.	1.5 Показатели надежности	. 4
2.2	Метрологические характеристики	. 4
2.3	Функциональные характеристики	. 6
3	Состав изделия	
4	Устройство и принцип работы	. 6
4.1	Конструкция и принцип работы	. 6
4.2	Числоимпульсные выходы	. 8
4.3	Индикатор	. 9
4.4	Система диагностики	. 9
4.5	Интерфейсы	10
4.6	Токовый выход	11
4.7	Архивы	12
5	Защита от несанкционированного вмешательства	13
6	Указание мер безопасности	14
7	Установка и монтаж	
8	Подготовка к работе	
9	Техническое обслуживание	
10	Возможные неисправности и способы их устранения	15
11	Маркировка	
12	Правила хранения и транспортирования	
	тожение А – Габаритные размеры расходомеров	
	тожение Б – Требования к длине прямых участков	
Приг	ложение В – Потери давления на расходомерах	19

ВНИМАНИЕ!

При проведении электросварочных работ на месте эксплуатации преобразователей не допускается:

- наличие на Питерфлоу РС напряжения питания;
- протекание через прибор сварочного тока.

Введение

Настоящее руководство по эксплуатации предназначено для ознакомления с принципом работы, устройством и конструкцией расходомеров электромагнитных Питерфлоу РС (в дальнейшем – расходомеры) с целью их правильной эксплуатации.

1 Назначение и область применения

Расходомеры предназначены для измерений объемного расхода и объема электропроводящих жидкостей, протекающих по трубопроводу.

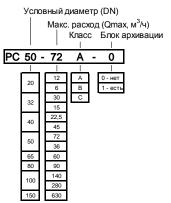
Расходомеры могут применяться на объектах теплоэнергетического комплекса, на промышленных предприятиях и в жилищно-коммунальном хозяйстве.

Расходомеры обеспечивают следующие функциональные возможности:

- отображение результатов измерений посредством встроенного индикатора;
- накопление значений объемов по результатам измерений;
- представление результатов измерений и диагностической информации на внешние устройства посредством унифицированных выходных сигналов.

Расходомеры имеют следующие выходные сигналы:

- два импульсных сигнала, формируемых дискретным изменением сопротивления выходной цепи;
- цифровой сигнал LIN несущий информацию о результатах измерений и диагностики.


Расходомеры имеют исполнения, отличающиеся:

- диаметром условного прохода (DN);
- классом, определяющим диапазон преобразования расхода, в котором нормирована погрешность измерений;
- конструктивным исполнением, определяющим способ подсоединения к трубопроводу (фланцевый или «сэндвич»);
- диапазоном измерений расхода при одном и том же диаметре условного прохода (Qmax).

По отдельному заказу может устанавливаться блок архивации с часами реального времени.

Условное обозначение расходомера при заказе:

Расходомер Питерфлоу:

2 Технические характеристики

2.1 Эксплуатационные характеристики

- · · · · · · · · · · · · · · · · · · ·
2.1.1 Параметры измеряемой среды
Удельная электропроводностьот 10 ⁻³ до 10 См/м;
Нейтральность по отношению к фортрону и нержавеющей стали;
Температура измеряемой среды от 0 до 150 °C;
Рабочее давление измеряемой среды, не более
2.1.2 Рабочие условия эксплуатации
Температура окружающего воздуха от минус 10 до плюс 50 °C;
Относительная влажность воздуха при 35 °C, не более
Атмосферное давление в диапазоне от 84 до 106,7 кПа;
Переменное магнитное поле, не более
Механическая вибрация частотой 10÷55 Гц с амплитудой смещения до 0,35 мм;
Гидравлическая прочность

ВНИМАНИЕ! Запрещается эксплуатация расходомеров во **ВЗРЫВООПАСНЫХ ПОМЕЩЕНИЯХ**.

Степень защиты корпуса IP65 по ГОСТ 14254

2.1.3 Электрические параметры блока питани	<i>ия из комплекта поставки</i>
Напряжение сети переменного тока	ном. 220 В (~150240 В);
Мощность, потребляемая от сети, не более	5 BA;
Выходное напряжение	12 B ±5%;
2 1 4 Fafaniimulia nasmanli ii macca	

2.1.4 Габаритные размеры и масса

Габаритные размеры и масса указаны в приложении А.

2.1.5 Показатели надежности

 Средняя наработка на отказ, не менее
 80 000 ч;

 Срок службы, не менее
 12 лет.

2.2 Метрологические характеристики

Диаметры условных проходов (DN) и соответствующие значения расходов в зависимости от класса, приведены в табл. 2.1. Значения порогов чувствительности – в табл. 2.2.

Пределы допускаемой относительной погрешности при измерении расхода и объема (с применением импульсного и цифрового сигнала, по показаниям на табло) не превышают значений:

- ± 1 % в диапазоне измерений расхода от Qt1 (включительно) до Qmax;
- ± 2 % в диапазоне измерений расхода от Qt2 до Qt1;
- ± 5 % в диапазоне измерений расхода от Qmin до Qt2.

Пределы допускаемой относительной погрешности при измерении времени не превышают ± 0.05 %.

Емкость счетчиков объема до 99999999,999 м³.

Емкость счетчика времени наработки 999999 час.

Таблица 2.1 –**Значения расходов при прямом направлении потока измеряемой** среды. [м³/ч]

	C	реды,	[м /ч]							
Тип РС	Класс	Qmax	Qt1	Qt2	Qmin	Тип РС	Класс	Qmax	Qt1	Qt2	Qmin
	Α			0,08	0,032		Α			0,04	0,016
PC20-12	В	12	0,12	0,048	0,0192	PC20-6	В	6	0,06	0,024	0,0096
	С			0,027	0,0192		С			0,013	0,0096
	Α			0,2	0,08		Α			0,1	0,04
PC32-30	В	30	0,3	0,12	0,048	PC32-15	В	15	0,15	0,06	0,024
	С			0,067	0,048		С			0,033	0,024
	Α			0,3	0,12		Α		,5 0,22	0,15	0,06
PC40-45	В	45	0,45	0,18	0,072	PC40-22,5	В	22,5		0,09	0,036
	C			0,1	0,072		C		Ü	0,05	0,036
	Α			0,48	0,192		Α		36 0,36	0,24	0,096
PC50-72	В	72	0,72	0,288	0,1152	PC50-36	В	36		0,144	0,0576
	С			0,16	0,1152		С			0,08	0,0576
							Α			0,4	0,16
						PC65-60	В	60	0,6	0,24	0,096
							С			0,133	0,096
							Α			0,6	0,24
						PC80-90	В	90	0,9	0,36	0,144
							С			0,2	0,144
	Α			1,867	0,747		Α			0,933	0,37
PC100-280	В	280	2,8	1,12	0,448	PC100-140	В	140	1,4	0,56	0,224
	С			0,62	0,448		С			0,311	0,224
	Α			4,2	1,68						
PC150-630	В	630	6,3	2,52	1,008						
	С			1,4	1,008						

При обратном (реверсном) направлении потока измеряемой среды значения расходов **соответствуют классу A**.

Таблица 2.2 – Значения порогов чувствительности Q₁

Таолис	14 Z.Z	Ona	TOTIVIZ	ιπορο	וי טטוי	,00101	וטונטוו	1100171	Q 0				
Тип РС	PC20-6	PC20-12	PC32-15	PC32-30	PC40-45	PC40-22,5	9E-050A	PC50-72	09-590A	06-08ጋd	PC100-140	PC100-280	PC150-630
Q ₀ , [м3/ч]	900'0	0,012	0,015	0,03	0,045	0,0225	0,036	0,072	90'0	60'0	0,14	0,28	0,63

2.3 Функциональные характеристики

Расходомеры всех исполнений хранят накопленные значения объемов в прямом и обратном направлениях потока, времени наработки и времени работы с ошибкой.

Расходомеры при значении расхода менее порога чувствительности (табл. 2.2) обеспечивают:

- обнуление показаний расхода на индикаторе и по интерфейсу;
- отсутствие выходных импульсов.

Расходомеры при отсутствии напряжения питания:

- сохраняют накопленные значения объема и времени наработки;
- прекращают измерение времени наработки. Дискретность регистрации времени наработки составляет 1 мин.

Расходомеры с помощью интерфейса обеспечивают передачу измерительной, архивной и диагностической информации на внешнее устройство.

Потери давления на расходомерах приведены в приложении В.

3 Состав изделия

Состав изделия и комплект поставки приведены в таблице 3.1.

Таблица 3.1

тавлица вт			
Наименование	Обозначение	Кол-во	Примечание
Расходомер электромагнитный	Питерфлоу РС	1	Исполнение согласно заказу
Руководство по эксплуатации	TPOH.407111.001 PЭ	1	
Паспорт	ТРОН.407111.001 ПС	1	
Методика поверки	MΠ 2550-0160-2011		1 экз. при групповой
Инструкция по монтажу	ТРОН.407111.001 ИМ		поставке
Блок питания		1	
Прокладка	ΓΟCT 15180-86	2	

4 Устройство и принцип работы

4.1 Конструкция и принцип работы

Принцип действия расходомеров основан на явлении индуцирования электродвижущей силы (ЭДС) в движущемся в магнитном поле проводника — измеряемой среде.

Индуцируемая ЭДС, значение которой пропорционально расходу (скорости) измеряемой среды, воспринимается электродами и поступает на электронный блок преобразования, выполняющий обработку сигнала в соответствии с установленными алгоритмами.

Расходомеры состоят из измерительного участка (ИУ), электронного блока (ЭБ) и внешнего (выносного) адаптера.

ИУ представляет собой футерованный защитным материалом отрезок трубопровода из немагнитной стали, заключенный в кожух, защищающий элементы магнитной системы расходомера.

ЭБ расходомера выполнен в герметичном корпусе, внутри которого расположены печатная плата и элементы присоединения внешних цепей. ЭБ снабжен индикатором, отображающем результаты измерений и диагностики. Расходомер имеет два импульсных выхода, формируемых дискретным изменением сопротивления выходной цепи при прохождении через расходомер заданного объема измеряемой среды в одном или в двух направлениях потока.

Адаптер обеспечивает (определяется исполнением) передачу информации о результатах измерений и диагностике на внешний ПК по интерфейсам RS232 или Ethernet.

Внешний вид расходомера и адаптеров представлен на рис. 1.

Вид со стороны индикатора Вид со стороны разъема

Адаптеры интерфейса

Рис. 1 – Внешний вид расходомера и адаптеров

Подключение внешних приборов к расходомеру производится с помощью кабельных линий связи. Ввод кабелей в ЭБ осуществляется через герметизированные вводы, рассчитанные на подключение кабелей или гофрошлангов.

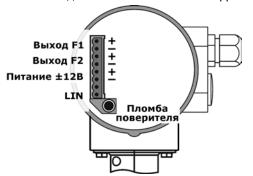


Рис. 2 – Подключение внешних приборов

4.2 Числоимпульсные выходы

Числоимпульсные сигналы формируются на **ПАССИВНОМ ВЫХОДЕ**, представленном открытым коллектором (см. рис. 3).

Форма сигнала — прямоугольная.

Максимальная выходная частота 500 Гц.

Максимальная длительность импульса 0,1 с.

Оба выхода (F1 и F2) независимы, но имеют **ОБЩИЙ ВЕС** импульса.

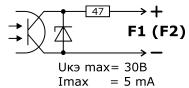


Рис. 3 – Схема выходного каскада числоимпульсного выхода

Значения весов импульсов (ВИ), устанавливаемых по умолчанию при выпуске, приведены в табл. 4.1.

Таблица 4.1 – Вес импульса по умолчанию

Тип РС	PC20-x	PC32-x	PC40-x	PC50-x	PC65-x	PC80-x	PC100-x	PC150-x
ВИ, л/имп	0,25	0,5	1,0	1,25	2,5	5	5	10

Числоимпульсные выходы имеют несколько режимов работы. Каждый из выходов настраивается независимо друг от друга.

Настройка режимов выходов выполняется производителем или сервис-центром в соответствии с картой заказа.

Режимы числоимпульсных выходов представлены в таблице 4.2.

Таблица 4.2 – Режимы работы числоимпульсных выходов расходомера

Nº	Режим работы выхода	Индикация	Характеристика выхода
0	Реверсный режим (прямой сигнал)		Рвых, Гц Гмакс Отшибки измерений МХ ОГ
1	Реверсный режим (инверсный сигнал)		-QMakc -Qo 0+Qmakc Q
2	Измерение прямого потока (прямой сигнал)		Банх, Гц Бимбки Бимби Би
3	Измерение прямого потока (инверсный сигнал)		-OMAKC -QO 0+QO +OMAKC Q
4	Измерение обратного потока (прямой сигнал)	—	Ф Бых, Гц Ошибки Бмакс измерений ОГ МХ
5	Измерение обратного потока (инверсный сигнал)		-OMAKC -OO 0 +OO +OMAKC Q
6	Компаратор (прямой сигнал)		Состояния выхода Режим выхода
7	Компаратор (инверсный сигнал)	\square	Ropor Komnaparopa t
8	Флаг ошибки измерений	ERR	Нет ошибок Есть ошибки измерений измерений t

4.3 Индикатор

Расходомер имеет графический ЖКИ индикатор для отображения результатов измерений и диагностики, а также служебной и настроечной информации.

Данные представляются на 4-х последовательно сменяемых экранах (рис. 4).

Рис. 4 – Содержимое информационных экранов

4.4 Система диагностики

В процессе работы расходомер контролирует состояние измеряемой среды и работоспособность электронной схемы. При выявлении нештатных ситуаций формируется код ошибки, который записывается в архивы событий и архивы измерений, а также отображаются на индикаторе.

Различаются 2 типа нештатных ситуаций:

 ошибки, при которых невозможно измерить текущий расход. Тип ошибки отображается на индикаторе вместо значения текущего расхода и дублируется цифровым значением в треугольнике.

При ошибках на импульсном выходе формируется сигнал, который идентифицируется тепловычислителем ТВ7 как неисправность расходомера.

При наличии ошибок расходомер следует отправить в ремонт.

 предупреждения, при которых расходомер измеряет расход, но следует устранить выявленные замечания.

Коды предупреждений:

Прибор в режиме калибровки

 Непроводящий налет на электродах *

– Частота больше максимума

Расход больше максимума

 Остановка часов реального времени *

 Отсутствие воды в трубопроводе.
 Предупреждение дублируется надписью «ПУСТО» на индикаторе. *

^{*} ошибки индицируются только в версии ПО 3.12

4.5 Интерфейсы

Расходомер подключается к внешним устройствам через внешние адаптеры.

Адаптеры крепятся на DIN-рейку.

Габариты адаптера приведены на рис. 5.

Адаптеры обеспечивают связь с внешними устройствами по интерфейсам RS-232 или Ethernet.

Адаптер Ethernet имеет 2 канала.

Протоколы обмена:

- Modbus ASCII при работе с адаптером RS232;
- ModBus TCP при работе с адаптером Ethernet.

Скорость передачи данных 19200 кбит/с.

Питание адаптеров осуществляется от блоков питания расходомеров.

Схемы подключения адаптеров интерфейса приведены на рис. 6 и 7.

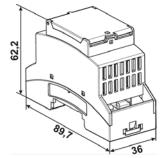


Рис. 5 – Внешний вид адаптера

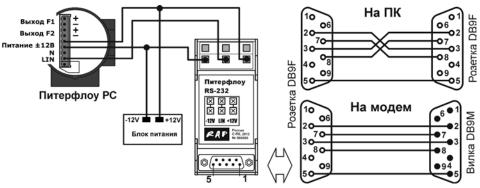


Рис. 6 - Схема подключения адаптера RS-232

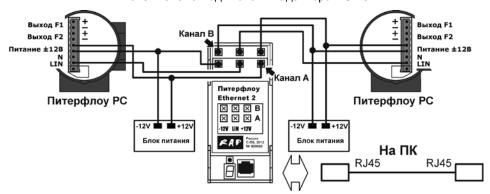


Рис. 7 – Схема подключения адаптера Ethernet

Примечание В случае подключения к адаптеру Ethernet одного расходомера подключение **ТОЛЬКО** к каналу **A**.

4.6 Токовый выход

Токовый выход с сигналом постоянного тока от 4 до 20 мА, пропорциональный текущему расходу, реализуется через внешний адаптер АДИ-1-0(1).

Адаптер подключается к расходомеру по интерфейсу LIN. Сопротивление нагрузки не более 200 Ом.

Питания адаптера АДИ-1-0(1) осуществляется от блока питания расходомера.

Схема подключения адаптера приведена на рис. 8.

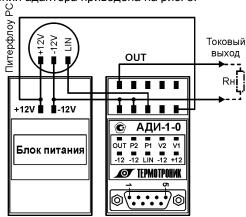


Рис. 8 – Схема подключения токового адаптера к Питерфлоу РС

Перед вводом адаптера в эксплуатацию необходимо с помощью ПО «АДИ Конфигуратор» установить верхний и нижний пределы расходов для токового выхода (Gmax и Gmin).

Для разрешения изменений параметров настройки следует нажать на время не менее 1 с на кнопку доступа, находящуюся внутри корпуса адаптера (см. рис. .

Рис. 9 – Схема подключения токового адаптера к Питерфлоу РС

Порядок работы с ПО «АДИ Конфигуратор» приведен в описании программы, доступном для скачивания с сайта ЗАО «ТЕРМОТРОНИК» www.termotronic.ru.

4.7 Архивы

Глубина архивов в зависимости от версии встроенного ПО составляет:

Тип орушро	Глубина архивов, записи				
Тип архива	ПО 3.07	ПО 3.12			
Минутный	64	1024 (17 часов)			
Часовой	1683 (70 суток)	2048 (85 суток)			
Суточный	365	512			

Результаты измерений в архивах привязываются к показаниям часов реального времени (устанавливаются по отдельному заказу) или ко времени наработки расходомера.

Питание часов реального времени при отсутствии сетевого напряжения осуществляется от встроенной литиевой батареи.

ВНИМАНИЕ! Срок хранения расходомера с часами реального времени не более 6 месяцев от даты поверки.

Архивные данные записываются в конце каждого отчетного интервала.

Структура архивных записей:

- Временная метка записи (Время) (только при наличии часов реального времени);
- Суммарное время наработки (Нараб.);
- Накопленный объем в прямом направлении (V+);
- Накопленный объем в обратном направлении (V-);
- Ошибки измерений на отчетном интервале (Ошибки);
- Суммарное время наработки с ошибкой (Нараб. при ош.);
- Минимальный расход на отчетном интервале (Gmin);
- Максимальный расход на отчетном интервале (Gmax).

Пример архивной записи приведен в таблице.

Nº	Время	Нараб.	V+, м3	V-, м3	Ошибки	Нараб. при ош.	Gmin, м3/ч	Gmax, м3/ч
28	22.02.2012 23:14	183ч: Омин	230469,774	1013,517	MX	1ч: 18 мин	2,341	2,344

Значения кодов ошибок описаны в п. 4.4 Система диагностики. При калибровке расходомера в часовой и суточный архивы дополнительно записываются признак изменения калибровок (значение **WC** в столбце Ошибки).

Восстановление записей архивов при отключении питания и коррекции часов.

При отключении питания на границе часа, в часовой архив записывается последняя до отключения питания копия минутной записи. При этом часовая запись будет иметь временную метку, что и минутная запись. Новая часовая запись сопровождается флагом **RR** (восстановленная запись).

Первая штатная запись часового архива (после отключения питания) будет иметь флаг FR (первая запись после включения).

При отключении питания внутри часа, новая часовая запись не формируется. В этом случае первая штатная запись часового архива будет иметь флаги **FR** (первая запись после включения) и **RR** (восстановленная запись).

Для суточного архива применяется тот же алгоритм, только восстановление записей производится по часовому архиву.

Подключение расходомера к компьютеру осуществляется через внешние адаптеры интерфейса (см. п. 4.5). Чтение архивов производится с помощью программы «**Архиватор**», доступной для скачивания с сайта ЗАО «ТЕРМОТРОНИК» www.termotronic.ru.

5 Защита от несанкционированного вмешательства

Для предотвращения несанкционированного вмешательства в работу расходомеров предусмотрены следующие виды защиты:

 защита от изменений метрологических характеристик и вмешательства в электронный модуль.

Выполняется нанесением оттиска клейма госповерителя на мастике в чашках на лицевой стороне и внутри расходомера (рис. 10).

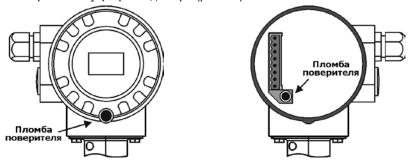


Рис. 10 – Места установки пломб поверителя

• защита от отключения соединительных линий и демонтажа расходомера.

Обеспечивается пломбированием расходомеров навесной пломбой инспектора снабжающей организации (рис 11). Место установки пломбы определяется конструктивным исполнением корпуса электронного блока.

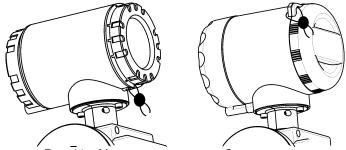


Рис. 11 – Места установки пломбы инспектора

Защита от демонтажа расходомеров обеспечивается пломбированием крепежных элементов расходомера навесной пломбой инспектора снабжающей организации.

С целью оперативного контроля за внесением изменений в настройки и встроенное ПО на индикатор выводится информация о весе импульса, режимах выходов (экран 2, п. 4.3 Индикатор), а также версия и контрольная сумма встроенного ПО (экран 4).

Метрологически значимые параметры (вес импульса, режимы выходов и калибровочные коэффициенты) записываются в паспорт прибора.

Все внесенные в параметры настройки изменения фиксируются в нестираемом архиве событий. В архивы измерений записывается признак изменений калибровок. Чтение всех архивов производится с помощью программы «**Архиватор**», доступной для скачивания с сайта ЗАО «ТЕРМОТРОНИК».

6 Указание мер безопасности

К работе с расходомером допускаются лица, изучившие настоящее РЭ и прошедшие инструктаж по технике безопасности в соответствии с действующими на предприятии инструкциями.

По способу защиты от поражения электрическим током расходомер относится к классу III по ГОСТ 12.2.007.0.

Запрещается эксплуатация расходомеров с повреждениями, которые могут вызвать нарушение герметичности корпуса или его соединений с трубопроводом.

Присоединение и отсоединение расходомеров от магистрали, подводящей измеряемую среду, должно производиться при полном отсутствии давления в трубопроводе и отключенном напряжении питания.

ВНИМАНИЕ! Не допускается эксплуатация расходомеров во взрывоопасных помещениях.

7 Установка и монтаж

Монтаж и подключение расходомеров осуществляется в соответствии с документом «Расходомеры электромагнитные Питерфлоу РС. Инструкция по монтажу».

Расходомеры необходимо располагать в части трубопровода, где пульсации и завихрения минимальные. При установке необходимо обеспечить прямолинейные участки трубопровода до и после расходомеров.

Требования к длине прямых участков приведены в приложении Б. На прямых участках, не должно быть никаких устройств или элементов, вызывающих искажение потока жидкости.

8 Подготовка к работе

Перед началом работы проверить правильность монтажа преобразователя и его электрических цепей.

При работе со вторичными приборами установить вес импульса, равный значению веса импульса в расходомере.

Проверить работоспособность расходомера, для чего выполнить следующие операции:

- заполнить ИУ расходомера неподвижной средой и проверить герметичность его соединения с трубопроводом по отсутствию подтеканий, капель и т.п.;
- включить напряжение питания;
- обеспечить циркуляцию среды и убедиться в наличии выходного сигнала расходомера. Контроль сигнала может осуществляться по вторичному измерительному прибору, измеряющему частоту, период или количество импульсов.

Сравнить показания текущего расхода на индикаторе с показаниями вторичного прибора.

9 Техническое обслуживание

Техническое обслуживание при эксплуатации расходомера включает в себя проверку:

- состояния электрического соединения корпуса расходомера и трубопровода;
- герметичности соединения расходомера с трубопроводом.

Указанные операции рекомендуется выполнять не реже двух раз в месяц.

Если в измеряемой среде возможно выпадение осадка, то расходомер необходимо периодически промывать с целью устранения отложений. При этом нельзя допускать механических повреждений внутренней поверхности ИУ расходомера и его электродов.

Техническое обслуживание при хранении включает в себя учет времени хранения и соблюдение правил хранения.

Поверка производится 1 раз в 4 года в соответствии с методикой поверки МП 2550-0160-2011 «Расходомеры электромагнитные «Питерфлоу РС». Методика поверки»

При экспортных поставках межповерочный интервал определяет страна-импортер.

Перед проведением поверки внутренняя поверхность измерительного участка расходомера должна быть очищена от токопроводящего осадка без применения абразивных материалов. При этом особое внимание следует обратить на недопустимость повреждения поверхности электродов.

10 Возможные неисправности и способы их устранения

10.1. Возможные неисправности расходомера и способы их устранения приведены в таблице 6.

Таблица 6

Внешнее проявление неисправности	Вероятная причина	Способ устранения
При включении питания отсутствует свечение индикатора	Нет напряжения питания на расходомере	Проверить наличие пита- ния
Хаотичные показания расхода (объема)	Плохое электрическое соединение корпуса и трубопровода Газовые пузыри в измеряемой среде	Проверить соединение, устранить неисправность. Устранить наличие газа в среде
Явное несоответствие сигналов расходомера	Неполное заполнение ИУ из- меряемой средой	Заполнить ИУ средой
измеряемому расходу (объему)	Отложение осадка на внут- ренней поверхности ИУ	Очистить внутреннюю по- верхность ИУ.

11 Маркировка

Маркировка расходомера наносится на электронный блок и содержит следующую информацию:

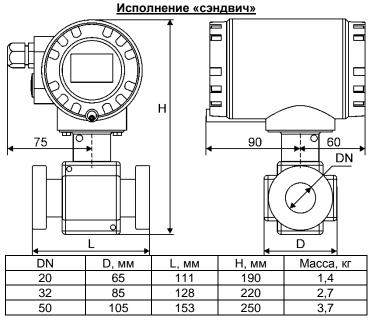
- фирменный знак изготовителя и знак утверждения типа;
- условное обозначение расходомера;
- максимальные рабочие значения давления и температуры;

На этикетке на корпусе проточной части

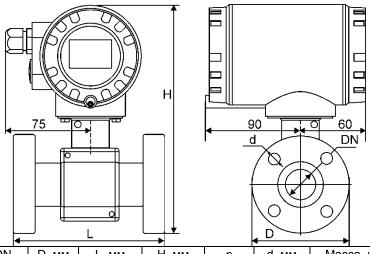
- диаметр условного прохода, класс, заводской номер;
- стрелка, для указания направления прямого потока измеряемой среды.

12 Правила хранения и транспортирования

Хранение расходомеров осуществляется в заводской таре в складских помещениях при отсутствии в них пыли, паров кислот и щелочей, агрессивных газов, вызывающих коррозию, в соответствии с условиями хранения 1 по ГОСТ 15150.

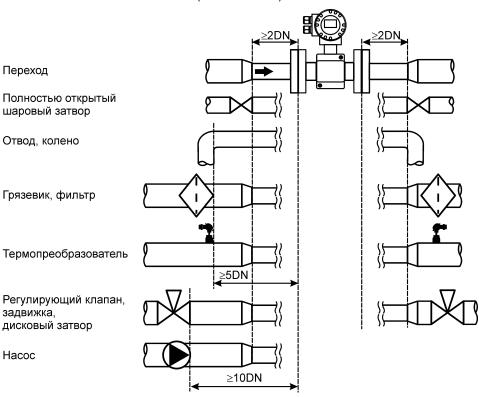

Транспортирование расходомеров может осуществляться всеми видами транспорта, в том числе воздушным в герметизированных отсеках.

Предельные условия транспортирования:

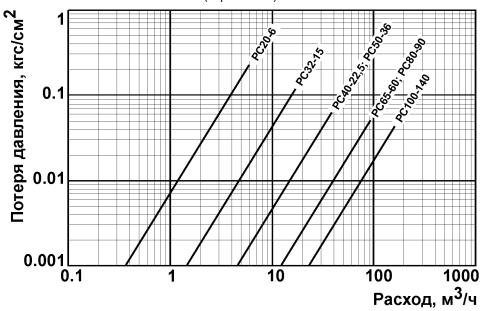

температура окружающего воздуха от минус 25 до плюс 55 °C; относительная влажность воздуха при температуре 35 °C не более 95 %; амплитуда вибрации при частоте до 10÷55 Гц...... не более 0,35 мм.

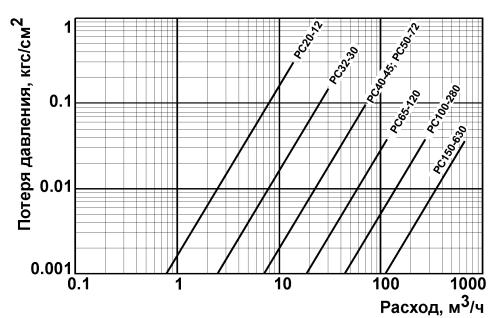
Во время транспортирования и погрузочно-разгрузочных работ тара не должна подвергаться резким ударам и прямому воздействию атмосферных осадков и пыли.

Приложение A – Габаритные размеры расходомеров (справочное)


Фланцевое исполнение

ı	DN	D, MM	L, MM	H, MM	n	a, mm	імасса, кг
	40	145	200	250	4	18	5,5
	65	180	200	310	4	18	10,0
I	80	195	200	310	4	18	10,6
	100	215	250	320	8	18	13,1
	150	300	328-3	500	8	26	33,6


Приложение Б — Требования к длине прямых участков


(обязательное)

Примечание Длины прямых участков указаны в DN расходомера

Приложение В – Потери давления на расходомерах (справочное)

